Publications & Patents

Publications & Patents

Publication Molecular landscape of osimertinib resistance in patients and patient-derived preclinical models.

페이지 정보

profile_image
작성자 DAAN
조회 595회 작성일 24-02-27 17:44

본문

Journal Ther Adv Med Oncol.
Name Lim SM, Yang SD, Lim S, Heo SG, Daniel S, Markovets A, Minoo R, Pyo KH, Yun MR, Hong MH, Kim HR, Cho BC.
Year 2022

Abstract

Introduction: Osimertinib is a third-generation EGFR tyrosine kinase inhibitor (TKI) that is approved for the use of EGFR-mutant non-small cell lung cancer (NSCLC) patients. In this study, we investigated the acquired resistance mechanisms in NSCLC patients and patient-derived preclinical models.

Methods: Formalin-fixed paraffin-embedded tumor samples and plasma samples from 55 NSCLC patients who were treated with osimertinib were collected at baseline and at progressive disease (PD). Next-generation sequencing was performed in tumor and plasma samples using a 600-gene hybrid capture panel designed by AstraZeneca. Osimertinib-resistant cell lines and patient-derived xenografts and cells were generated and whole exome sequencing and RNA sequencing were performed. In vitro experiments were performed to functionally study the acquired mutations identified.

Results: A total of 55 patients and a total of 149 samples (57 tumor samples and 92 plasma samples) were analyzed, and among them 36 patients had matched pre- and post-treatment samples. EGFR C797S (14%) mutation was the most frequent EGFR-dependent mechanism identified in all available progression samples, followed by EGFR G824D (6%), V726M (3%), and V843I (3%). Matched pre- and post-treatment sample analysis revealed in-depth acquired mechanisms of resistance. EGFR C797S was still most frequent (11%) among EGFR-dependent mechanism, while among EGFR-independent mechanisms, PIK3CA, ALK, BRAF, EP300, KRAS, and RAF1 mutations were detected. Among Osimertinib-resistant cell lines and patient-derived models, we noted acquired mutations which were potentially targetable such as NRAS p.Q61K, in which resistance could be overcome with combination of osimertinib and trametinib. A patient-derived xenograft established from osimertinib-resistant patient revealed KRAS p.G12D mutation which could be overcome with combination of osimertinib, trametinib, and buparlisib.

Conclusion: In this study, we explored the genetic profiles of osimertinib-resistant NSCLC patient samples using targeted deep sequencing. In vitro and in vivo models harboring osimertinib resistance revealed potential novel treatment strategies after osimertinib failure.

Keywords: EGFR inhibitor; drug resistance; lung cancer; non-small cell lung cancer; targeted therapy.

첨부파일